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Abstract

In the past 25 years, the 3+3 design has been the most popular approach for plan-

ning phase I dose-finding trials in oncology. During the same time period, major devel-

opment of more efficient model-based designs has been made by statistical researchers
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aiming to improve the clinical practice of dose finding in oncology. Despite the effort,

3+3 is still the most frequently used designs in practice. Part of the reason is due to

the lack of software tools that allow comparison of different designs, including 3+3 and

other model-based methods, in a head-to-head and easy-to-use fashion. To this end,

we introduce NextGen-DF, a next-generation tool for designing oncology dose-finding

trials that allows for construction, comparison, and calibration of multiple designs

via internet, in real time, and independent of computer operating systems. Through

NextGen-DF, we present massive and user-generated comparison results based on over

4 million simulated trials, which clearly indicate the inferiority of 3+3. To our knowl-

edge, the reported crowd-sourcing results are the largest and most objective comparison

across major dose-finding methods to date. NextGene-DF is expected to improve pa-

tient care and drug development by providing safer and more efficient designs for phase

I oncology trials. NextGen-DF is available at www.compgenome.org/NGDF.

Keywords: 3+3; Bayesian design; CRM; mTPI; Next-generation dose finding; Webtool.

1 Introduction

In oncology, phase I dose-finding trials are the initial first-in-human experiments to test

the safety of a new treatment. Ascending doses of the treatment are given to patients

sequentially and dose-limiting toxicity (DLT) events are monitored with a goal to find the

maximum tolerated dose (MTD), the highest dose with a probability of toxicity of DLT less

than a target rate, usually denoted by pT . For more than two decades, the majority of phase

I oncology trials is based on the 3+3 design [1]. In recent in-depth reviews [2, 3], it has

been shown that in practice more than 90% of the trials use the 3+3 design. These statistics

illustrate the popularity of the 3+3 design. It would be of interest to learn whether 3+3
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leads to a high success rate in phase I oncology trials.

Despite the popularity of 3+3, the performance of Phase I trials in oncology has been

miserable. The largest and most recent survey [4] of 835 drug developers, including biotech

and large pharmaceutical firms, showed alarming failure rates of oncology trials compared

with those in other disease indications, with the largest discrepancy seen in phase I trials.

In particular, the survey pointed out that non-oncology phase I trials were twice likely to

produce an FDA approval than oncology phase I trials. Such failure is likely due to the wrong

doses recommended from the phase I studies. Without selecting the right dose, a promising

treatment could fail later in confirmatory studies due to either high toxicity caused by over

dosing or lack of efficacy caused by under dosing.

The standard 3+3 design has been shown by numerous statistical publications to be an

inferior, over-simplified and algorithm-driven method when compared to model-based trial

designs [5, 6, 7, 8, 9, 10, 11]. For example in [9] we demonstrated that the mTPI design [8],

when compared to 3+3 based on matched sample size, was safer in protecting patients from

being exposed to overly toxic doses, and still possessed sufficient power in identifying the

true MTD.

The question is then, why is there such a discrepancy between the popularity of 3+3 in

practice and its unpopularity in the scientific literature? Also, why did 3+3 remain to be

the most frequently used design when phase I trials in oncology failed miserably? Simplicity

of the 3+3 design makes it the most popular choice in practice. In particular, this was

the case in the late 1980s and early 1990s when computing power was limited. However,

given humans rapid gain in PC computing over the last two decades, more sophisticated

model-based designs with better safety protection and higher chance of finding the MTD

should outweigh methods that are inferior but require less computation. There is a practical
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need to upgrade designs and conduct for phase I oncology trials. Currently, there are few

computational tools that allow direct comparison of multiple designs through a user-friendly

computing environment. Also, most efficient adaptive designs cannot provide a transparent

interface and require advanced IT infrastructure to implement in real-world settings. We

believe that this is the main reason why better designs are still unable to penetrate the

practical barrier.

Aiming at providing a user-friendly next-generation tool for the community, we introduce

NextGen-DF (Next-Generation Dose Finding) for phase I oncology trials. It is a next-

generation tool for three reasons. First, NextGen-DF is a web tool allowing investigators to

obtain, compare, and record statistical designs online in a web browser. This spares users

from needing to download, organize, and maintain software packages for various designs.

Second, NextGen-DF does not require a companion and dependable operating system or

computing software. It runs on an internet browser, such as Firefox, Safari, or Chrome, and

can be accessed from a PC, Mac, Tablet, or even a smart phone anywhere in the world via

internet. Third, NextGen-DF is based on optimized computer programs that achieve ultra

fast online computing and allows the simulation results to be obtained and visualized within

seconds, except for one function that includes comparison to a third-party program.

The remainder of the paper is organized as follows. Section 2 introduces the dose-

finding designs in the NextGen-DF tool, including the 3+3 design, CRM, mTPI, and a new

practical design derived from mTPI based on user preference. Section 3 describes the detail

of NextGen-DF as a web tool. Section 4 presents the crowd-sourcing comparison results

of the designs in user-generated simulations. We end the paper with a brief discussion in

Section 5.
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2 Methods in NextGen-DF

2.1 The mTPI Design

Phase I oncology trials aim to identify the maximum tolerated dose (MTD) of an investiga-

tional drug, the highest dose with a probability of dose-limiting toxicity (DLT) lower than

(or close to, in some cases) a targeted probability, denoted by pT . Patients are enrolled

and treated sequentially at ascending dose levels of the investigational drug, and escalate

or de-escalate the dose level depending on the observed DLTs. Proper designs provide rules

of escalation and de-escalation based on the observed DLT outcomes, aiming to locate the

MTD quickly without exposing patients to excessive toxicity.

NextGen-DF implements and compares three main-stream phase I dose-finding designs,

the standard 3+3 design [1], the continual reassessment method (CRM) [6], and the modified

toxicity probability interval design known as mTPI [8, 9]. These three designs receive more

attention in practice. The CRM design has been thoroughly studied and discussed by the

research community since 1990, with numerous extensions and modifications. The mTPI

design is relatively new but has already shown great potential in practice [12, 13, 14], rec-

ognized and adopted quickly by practitioners. NextGen-DF implements the standard 3+3

design, the CRM design provided in the R package ”dfCRM”, and the mTPI design. Ad-

ditionally, customized designs based on mTPI are also included to incorporate personalized

decisions. We plan to discuss these four designs next, starting from mTPI.

The modified toxicity probability interval (mTPI) design is a model-based method for

phase I clinical trials [8, 9]. It is an extension from the toxicity probability interval (TPI)

method [7], a founding method that established the use of toxicity probability intervals for

dose finding. The mTPI design employs a simple hierarchical model based on independent
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beta priors. This setting has been shown to be effective in standard phase I dose finding

studies with single agents [15] as well as in recent two-dimensional dose finding development

[16]. Suppose a total of d doses is prespecified for a dose finding trial. Let qi denote the

true but unknown toxicity probability for dose i, i = 1, . . . , d. After launching the trial, at

any moment the observed data include ni patients treated at dose i and the corresponding

xi ∈ [0, ni] experiencing DLTs. The likelihood function for data {(xi, ni), i = 1, . . . , d} is a

product of binomial probabilities,

l(q) ∝
d∏
i=1

qxii (1− qi)ni−xi (1)

where q = (q1, . . . , qd) is the vector containing all the qi’s. The mTPI method calculates the

unit probability mass (UPM) of three probability intervals corresponding to underdosing,

proper dosing, and overdosing, and assigns a dose for future patients based on a Bayesian

decision rule. Specifically, the underdosing interval is defined as (0, pT−ε1) which corresponds

to a dose escalation (E), the overdosing interval (pT + ε2, 1) corresponds to a dose de-

escalation (D), and the proper dosing interval (pT − ε1, pT + ε2) corresponds to staying at

the current dose (S). Here ε1 and ε2 are small fractions, such as 0.05, to account for the

uncertainty around the true target toxicity pT . Define the UPMs for three intervals as

UPM(D, i) =
P (qi − pT > ε2|data)

1− pT − ε2
,

UPM(S, i) =
P (−ε1 ≤ qi − pT ≤ ε2|data)

ε1 + ε2
,

UPM(E, i) =
P (qi − pT < −ε1|data)

pT − ε1
,

each of which is the ratio between the posterior probability and length of a dosing interval.
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The dose-assignment rule Bi, chooses the decision among D, S, or E, that produces the

largest value of UPM, that is,

Bi =


D, if UPM(D, i) > UPM(S, i) ∨ UPM(E, i),

S, if UPM(S, i) > UPM(D, i) ∨ UPM(E, i),

E, if UPM(E, i) > UPM(D, i) ∨ UPM(S, i),

(2)

Ji et al. (2010) showed that decision Bi is optimal in that it minimizes the posterior expected

loss, with the loss determined to achieve equal prior expected loss for the three decisions,

D, S, and E. The mTPI design uses a set of independent and vague priors qi ∼ Beta(1, 1).

Combined with the likelihood in (1), the posterior distribution of qi follows independent

Beta(1 + xi, 1 + ni − xi), for i = 1, . . . , d. When strong prior information on the toxicity of

the candidate doses is available, informative beta priors can replace the vague priors. The

choice of the independent prior models might seem counter-intuitive here since the toxicity

probabilities are in general believed to be monotone increasing over dose levels. Therefore,

theoretically it is desirable to introduce dependent models for qi’s. However, we believe that

for phase I trials with small sample sizes, especially when only a small number of patients

are treated at a given dose, may not benefit from dependent models alone. Designs using

dependent prior models need be complemented by practical rules [17, 18] to ensure the safety

and desirability of the designs.

In addition to the Bayes rule in (2), we recommend two additional rules for additional

protection of patient safety.

• Safety rule 1 (early termination): Suppose that dose 1 has been used to treat pa-

tients. If P (q1 > pT |data) > ξ for a ξ close to 1 (say, ξ = 0.95), then terminate

the trial due to excessive toxicity. Otherwise, terminate the trial when the maximum
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sample size is reached.

• Safety rule 2 (dose exclusion): Suppose that the decision is E, to escalate from dose

i to (i+ 1). If P (qi+1 > pT |data) > ξ, for a ξ close to 1 (say, ξ = 0.95), then treat the

next cohort of patients at dose i instead of (i+ 1) and exclude doses (i+ 1) and higher

from the trial, i.e., these doses will never be used again in the trial.

At the end of the trial when the toxicity outcomes of all the enrolled patients are observed,

a dose will be selected as the estimated MTD for subsequent studies. We view this as an

estimation problem that is separated from the design for dose finding. Following Ji et al.

(2010), we propose to select the MTD by performing an isotonic regression that borrows

strength cross doses. We first compute the posterior mean q̂i under the beta posterior

distribution and then apply the pooled adjacent violators algorithm (PAVA) [19] on q̂i so

that the resulting transformed values q̂∗i increase with the dose levels. That is, q̂∗j ≥ q̂∗i for

j ≥ i. The recommended MTD is the dose with a toxicity probability closest to pT , i.e.,

Estimated MTD = arg min
i
|q̂∗i − pT |.

2.2 The Customized Designs

The second design in NextGen-DF is new and derived from mTPI based on user preference.

We call it the customized design. Customized designs are rule-based and derived directly

from modifications of the decision table provided by mTPI. To obtain a customized design,

one simply starts by generating a decision table under the mTPI design for a trial. This

only requires providing the maximum sample size and the target MTD toxicity rate pT . A
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decision table from mTPI can be generated in NextGen-DF with these two trial parameters,

such as the one in Figure 1. Then in NextGen-DF a customized design can be constructed

by changing any decision in the table to a different one when desired. NextGen-DF allows

the new customized designs to be compared head-to-head with mTPI in simulated clinical

trials, thus allowing users to see the impact of the changes on the operating characteristics

of the designs. For example, when pT is set at 0.3, mTPI will perform S, i.e., staying at

the current dose, if 3 DLTs are observed from 6 treated patients (row 3, column 6 in the

decision table in Figure 1). A user might wonder how well the design would perform if the

decision for 3 (DLTs) out of 6 (patients) were D, to de-escalate. NextGen-DF allows users

to change S to D, de-escalate (see Quick Start Guide at www.compgenome.org/NGDF). Once

the table is changed, a customized design is constructed that uses a different decision table

from mTPI. NextGen-DF then allows users to compare the customized design with existing

designs via simulations.

2.3 The CRM Design

We use the “dfCRM” R package described in [20] for the implementation of CRM. NextGen-

DF directly calls the R package and use the “getprior()” function in the package to specify

the initial guesses of toxicity probabilities associated with the doses. We also use the default

dose-response model specified by the R package, which is an “empirical” model. Briefly, the

CRM model assumes a parametric dose-response curve, in the form of

qi(qi0, β) = qβi0,
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Figure 1: A decision table generated by mTPI for a trial of 15 patients and MTD target
toxicity probability pT = 0.3. The letters “E”, “S”, and “D”represent decisions of dose
escalation, dose stay (unchanged), dose de-escalation, respectively. Letter “U” means the
dose is too toxic and unacceptable, and should be excluded from the trial. The decisions
in the Table are precalculated based on a Bayesian hierarchical model in Ji et al. (2010).
NextGen-DF allows users to change any decisions in this table to different decisions, which
would result in new customized designs.
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where qi0 is an initial guess of the toxicity probability for dose i and β is a power parameter.

Given a set of initial guesses q̂0 = {q̂10, . . . , q̂d0}, the unknown parameter β is estimated based

on a Bayesian procedure in which a prior p(β) is used to update the binomial likelihood (1).

The posterior p(β | data) is obtained, and the recommended dose for the next cohort of

patients is given by

î = arg min
i
|qi(q̂i0, β̂)− pT | (3)

where β̂ is the posterior mean E(β | data).

Lee and Cheung (2009) [21] proposed a calibration procedure that returns a set of prior

guesses {q10, . . . , qd0} by imposing constraints on the dose response curves. Specifically, they

considered two sets of constraints as

qi−1(qi−1,0, bi) + qi(qi0, bi) = 2pT and qi(qi,0, bi+1) + qi+1(qi+1,0, bi+1) = 2pT (4)

qi−1(qi−1,0, bi) = pT − δ and qi+1(qi+1,0, bi+1) = pT + δ

where (pT − δ, pT + δ) is called an “indifference” interval. Similar to the “proper dosing”

interval in the mTPI design, the indifference interval contains the doses whose toxicity prob-

abilities are close approximations of pT , i.e., doses that can be approximated as the MTD.

Solving above two equations iteratively for all doses i, one gets an estimated guess q̂0 for the

entire trial, and assigns î in (3) to the next cohort of patients. The trial proceeds until the

DLT outcomes from the next cohort of patients are observed, at which point î is re-estimated.

The trial stops when the maximum sample size is reached.
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2.4 The 3+3 Design

Based on [1] we implement the 3+3 design described in Figure 2. To our knowledge, this is

the standard 3+3 design used by the pharmaceutical industry and many research institutes.

Below is a detailed algorithm for practical implementation.

The 3+3 Design:

1). Start trial by treating three patients at the initial dose (usually the lowest dose).

2). Denote the dose level being used to treat patients as the current dose level. Accrue and

treat three patients at the current dose level.

2a. If the maximum number of patients has been accrued, stop the trial. The MTD is

inconclusive.

3). Check the number of patients at the current dose level.

3a. If there are three patients, go to 4).

3b. If there are six patients, go to 5).

4). Check the number of toxicities (among three patients) at the current dose level.

4a. If there are zero toxicities, escalate and go to 7).

4b. If there is one toxicity, stay at the current dose and go to 2).

4c. If there are two or three toxicities, declare that the MTD has been exceeded and go

to 6).

5). Check the number of toxicities (among six patients) at the current dose level.

5a. If there are zero toxicities, stop the trial and declare that the MTD is the current

dose.

5b. If there is one toxicity, and the MTD has been exceeded, stop the trial and declare

that the MTD is the current dose; otherwise, go to 7).

5c. If there are two or more than two toxicities, declare that the MTD has been exceeded

12



and go to 6).

6). The MTD has been exceeded.

6a. If the current dose is the lowest dose, stop the trial and declare that the MTD is

lower than the lowest dose level.

6b. If the next-lower dose level has six patients, stop the trial and declare that the MTD

is the next lower dose level; otherwise, the next-lower dose level has three patients; set the

current dose level to be the next-lower dose level and go to 2).

7). Escalate if possible.

7a. If the current dose level is the highest dose level, stop the trial and declare that the

MTD is the highest dose level.

7b. Otherwise, escalate to the next-higher dose level and go to 2).

Figure 2: Schema of the standard 3+3 design. Assuming dose i is the dose currently being
used in the trial, the schema illustrates all the possible decisions under 3+3. Notation ni+1

refers to the number of patients that have been treated at dose level i + 1, the next higher
dose.
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3 NextGen-DF Web Tool

NextGen-DF contains three modules (Figure 3), each providing a different utility.

Module I, Decision, generates decision tables under the mTPI design. These decisions

are constructed based on the Bayesian hierarchical models and statistical inference under

the mTPI design. The use of independent priors in mTPI makes the implementation of

mTPI effortless and transparent, greatly enhancing its feasibility in practice. In particular,

a decision table (Figure 3, Module I) that contains all the possible decisions can be precalcu-

lated using the posterior beta distributions. The decision table will then be used repeatedly

to guide dose finding decisions. For detail, see Ji et al. (2010) and Ji and Wang (2013).

The Decision module also provides a function based on the isotonic transformation [9] that

provides an estimated MTD given the data from a completed trial.

Innovatively, we allow the users to freely modify any decision entries in the decision

table, which could result in a new and customized decision table. Each customized table

corresponds to a new customized design. As an option, NextGen-DF can also back calibrate

ε’s in the mTPI design and see if there are any values of ε’s that would give the same table

users changed to. That is, NextGen-DF can attempt to calibrate the mTPI design ε’s trying

to match the new decision table users specified. In particular, NextGen-DF sets up a search

program in the background which will traverse all the combinations of epsilons in the domain

of (0 < ε1 < pT , pT < ε2 < 1) with a step size of 0.001. Each combination will generate

an mTPI decision table, and the numbers of matched and mismatched decisions between

each mTPI table and the customized table will be enumerated. NextGen-DF reports an

mTPI table that matches the customized table when possible. If none of the mTPI tables

matches the customized table, NextGen-DF reports one that has the smallest mismatches.

See Quick Start Guide at www.compgenome.org/NGDF for an example. Users can opt to using
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Figure 3: Workflow of NextGen-DF. Module I Decision includes four functionalities: 1)
generate decision table, 2) calibrate design parameters based on mTPI, 3) personalize de-
cision table to generate new rule-based designs, and 4) estimate the MTD after the trial is
completed. Module II Simulation includes two functionalities: 1) add or modify simulation
scenarios, and 2) simulate trials using mTPI, 3+3, CRM, or the new rule-based designs
from Module I. Module III Comparison includes one functionality: compare the safety and
reliability of the designs through graphical and tabular displays.
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the customized design nonetheless and comparing the designs in Modules II and III.

Module II, Simulation, sets up computer simulation studies for comparing 3+3, CRM,

mTPI and potentially the customized designs generated from the Decision module. In this

module, users need to provide simulation scenarios for the clinical trial, such as the number of

doses, maximum sample size, target MTD probability pT , and the true toxicity probabilities

for the doses. NextGen-DF allows users to provide multiple scenarios to test different dose-

response shapes. NextGen-DF provides multiple means of generating simulation scenarios,

by manually inputting one scenario at a time, batch inclusion of multiple scenarios in a user-

prepared file, or inclusion of recommended build-in scenarios in the software. Investigators

will be able to change any aspects of the scenarios at any time, even after the scenarios

have been selected and the simulation studies have been conducted. This feature is useful

in practice as investigators are likely to modify scenarios multiple times after reviewing the

simulation results.

Module III, Comparison, displays the simulation results of different designs in graphical

and tabular forms (Figure 3). A circos plot [22] is generated summarizing results into a single

figure, greatly facilitating the visualization of the simulation outcomes. Aside from the usual

summary statistics such as the average numbers of patients treated and experienced toxicity

at each dose, or the average sample size and overall percentage of toxicity, we introduce

two additional summary statistics [9] to evaluate and compare the safety and reliability of

any two designs out of mTPI, 3+3, CRM, and the customized design. The two summary

statistics are

• n<=MTD% : percentage of the patients treated at or below the true MTD.

• SelMTD% : percentage of simulated trials selecting the true MTD.
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The value n<=MTD% directly evaluates the safety of a design in terms of the patients

treated at doses lower than or equal to the true MTD. The value of SelMTD% measures the

reliability of the design in selecting the true MTD. To calculate n<=MTD% and SelMTD%,

we need to decide which dose will be considered as the MTD for each scenario. Note that in

many scenarios, none of the doses have toxicity probabilities exactly equal to pT . However,

some dose-toxicity probabilities are close enough to be declared the MTDs. This is consistent

with the real-world belief that the exact value pT is almost never achieved for a dose. To

this end, we assume that any doses with true toxicity probabilities in the proper dosing

interval (pT − ε1, pT + ε2) would be considered as an estimated MTD. For example, if users

set ε1 = ε2 = 0.05, any dose in the interval (0.05, 0.15) when pT = 0.1, (0.15, 0.25) when

pT = 0.2, and (0.25, 0.35) when pT = 0.3 will be considered as an estimated MTD. If no dose

is in the proper dosing interval, the highest dose with true toxicity probability less than pT is

considered the MTD. If the MTD could not be identified (e.g., if all the doses have toxicity

probabilities higher than pT ), the correct decision is not to select any dose. In that case, the

percentage of ”none” selection (i.e., no dose selected as the MTD) is used to compare among

the designs.

The computational speed of the simulation runs is ultra fast, costing a few seconds to

complete the simulations for all the designs as long as one does not include the CRM in

the comparison. The CRM is based on the R package “dfCRM” which takes longer time

to compute. Nevertheless, even if CRM is included, NextGen-DF usually take minutes to

complete thousands of simulated trials, which should be acceptable for most users. Exclusion

of CRM would shorten the computation to seconds, allowing for real-time calibration. For

convenience, we provide a time estimate for completing the simulation studies when CRM is

included in the comparison. All the results can be saved locally as files for future reference.
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4 Results

4.1 Overall Results

Since the launch of NextGene-DF website at http://www.compgenome.org/NGDF, within

a few months there have been over 100 registered users from 25 different countries and

regions spanning America, Europe, Asia, and Oceania. The affiliations of these users are

mostly academic institutions and industry giants (see website above). Below we report

user-generated simulation results (through using NextGene-DF) comparing different designs,

which provide unbiased and crowd-sourcing evaluation of these designs. As will be seen next,

3+3 is the inferior design, which addresses some recent questions raised in the literature [23].

We recorded simulated trials and results conducted by NextGene-DF users and incorpo-

rated the results into a database. The database consists of results for 3+3, CRM and mTPI

based on 1,275 different scenarios and 4,327,385 simulated trials. To our knowledge, this

is the largest study evaluating the three designs to date. In each scenario, users specified a

number of doses and a set of true toxicity probabilities for all the doses, generated toxicity

response data based on the true toxicity probabilities of the doses, and conducted trials on

computer using each of the three designs. At the end of simulation, users summarized the

operating characteristics of the three designs and compared their performance. We summa-

rize the pairwise comparisons of mTPI, 3+3 and CRM in terms of reliability (SelMTD) and

safety (n≤MTD) based on the results database, see Figure 4. The first three boxplots com-

pare the reliability of the three designs. We calculate the average reliability of each design

across all the scenarios, and present the difference of the average reliability between any two

designs. The right three boxplots show the differences in the average safety. In all boxplots,
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a higher than zero value indicates that the first design of the pair has a better performance.

For example, the most left boxplot implies that mTPI is more reliable in finding the true

MTD than 3+3. Examining all six boxplots, it is clear that mTPI is the most desirable

design with higher reliability and safety and 3+3 is the least desirable design.

4.2 Analysis of Simulation Results

We perform a careful subgroup analysis of the simulation results based on 593 scenarios in

which both CRM and mTPI were used by the NextGene-DF users. In the other scenaiors,

only one of the two methods was used. The goal is to identify factors that characterize these

scenarios and associate them with the performance of different dose-finding methods. We

focus on the comparison of CRM and mTPI, excluding 3+3, as each method has been shown

to be superior than 3+3 in the literature.

Setup. For each scenario, a set of true toxicity probabilities p = (p1, . . . , pd) are specified by

NextGene-DF users. A large number of clinical trials (mostly between 1,000 to 10,000 trials)

is simulated for each scenario based on CRM and mTPI designs, and two main summary

statistics are calculated as part of the operating characteristics of the designs. They are

n<≤MTD and SelMTD, as defined in §3 of the main text. For each scenario and each design,

we obtain a pair of values for n<≤MTD and SelMTD. We then take the difference in each

value between the two designs (mTPI - CRM), and represent the differences as diff−n and

diff−sel. A positive/negative value of diff−n or diff−sel means that mTPI is safer/less safe,

or more/less likely to locate the true MTD than CRM. We use two diff’s as our response

variables for subgroup analysis. For predictive variables, or covariates, we define six variables

based on the characteristics of the scenarios. They are provided in Table 1. Specifically, for
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Figure 4: Performance comparison. Boxplots of pair-wise differences in reliability and safety
for the three designs, 3+3, CRM, and mTPI. The reliability is calculated as the average
percentage of selecting the true MTD across simulated trials for a given scenario. The safety
is calculated as the average percentage of patients treated at or below the MTD across
simulated trials for a given scenario. Each barplot summarizes the differences of reliability
or safety between two designs, in the form of design A minus design B. Therefore, if the
value is above zero, the first design of the pair has a better performance. For example, the
most left boxplot implies that mTPI is more reliable in finding the true MTD than 3+3.
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Table 1: Six covariates summarized for each scenario.

Covariate ID Covariate Name Mean Stand. Dev.
x1 pT 0.259 0.059
x2 dose-sd 0.155 0.075
x3 min-tox 0.111 0.120
x4 num-dose 5.086 1.180
x5 MTD-rank 55.9 33.6
x6 linearity 22.6 23.0

each scenario we define 1) “pT” as the true toxicity probability of the true MTD, 2) “dose-sd”

as the standard deviation of the vector p, 3) “min-tox” as the minimum, minp, 4) “num-

dose” as d, the number of doses, 5) “MTD-rank” as the position of the true MTD relative

to the dose index {1, 2, . . . , d} that takes values 1, 2, 3, and 4, if the true MTD is lower than

dose 1, lies in the first half of the doses, lies in the second half of the doses, and higher than

dose d, respectively, and 6) “linearity”, which we describe below.:

“linearity” measures how linear the dose response curve is when treating p as the true

response rates and dose index {1, 2, . . . , d} as the actual dose level. Since in the NextGene-

DF simulation, there is no need to input the actual dose level, we use the dose index as a

surrogate. We then fit a linear model

logit(pi) = µp + βp ∗ i+ ε,

where logit(p) = log(p) − log(1 − p) is the logit transformation. We then take the residual

sum of square of the regression above and use that as the value for “linearity”. The larger

the value, the worse the linear fit, and hence the less linear (at the logit scale) the dose

response curve.
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Figure 5: Histogram showing the frequencies of the numbers of simulated trials for all 593
scenarios.
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Subgroup Analysis of Scenarios We first perform a clustering analysis for the matrix

[psi] where s = 1, . . . , 593 index the scenarios and i = 1, . . . , 6 index the covariates. Figure 6

provides a summary of the subgroup analysis. The rows are scenarios, which are clustered

based on the Euclidean distance. The columns are the six covariates and the two response

variables, differences diff−sel in reliability and diff−n in safety. Figure 6 shows that there are

many row clusters, implying the user-generated scenarios are different. Covariate values are

standardized and transformed into (0, 1). Looking at the covariate columns, most covariates

display a diverse range. “Linearity” is mostly blue, meaning that most scenarios reflect a

linear dose-response curve. “Min-tox” (minp) is largely blue as well, suggesting that the

lowest dose has a small toxicity probability in most scenarios. In the last two columns, we

display the two differences between CRM and mTPI in realiability and safety; color red

suggests mTPI is better, yellow CRM, and white suggests two are equivalent. Comparing

the positions of yellow and red bars in the two columns along with the color display of the

six covariates, we suspect that covariates “dose-sd” and “MTD-rank” might be associated

with the two outcomes. We then perform a formal regression analysis.

Regression analysis. We perform a linear regression between each response variable,

among diff−n and diff−sel, and the six covariates. We fit a multivariate model with only

main effects,

E(ys) = a+
7∑
j=1

bjxis,

where ys is the value of either diff−n or diff−sel in scenario s and xis is the value of co-

variate xi in scenario s. Varible “MTD-rank” is treated as a categorical variable. We

obtain two fitted regression models using the least square estimates. We find that the most

significant variable is x2, “dose-sd”, which measures the standard deviation of the vector
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Figure 6: Subgroup Analysis. Differences in reliability and safety between CRM and mTPI
(right two columns) are displayed according to the clusters of six covariates in Table 1 for
593 scenarios specified by NextGene-DF users.
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p = {p1, . . . , pd}. The larger the standard deviation, the safer and more likely to find the

true MTD mTPI is compared with CRM. The actually value of pT , variable x1 is also signif-

icant in both models. A highter pT value favors CRM over mTPI in reliability (finding the

true MTD), and favors mTPI over CRM in safety (treating more patients at doses lower than

MTD). “MTD-rank” is significant for safety analysis, favoring mTPI. Linearity, variable x6

is not significant in both analysis, implying that neither a linear nor nonlinear dose response

curve favors mTPI or CRM. The analysis output is given in the Appendix.

5 Discussion

The main contribution of this work is not on the methodology development as all three

dose-finding designs, 3+3, CRM, and mTPI, as they have been thoroughly developed and

investigated in the scientific literature. Instead, we present NextGen-DF as an integrated

web tool consisting of all three designs allowing side-by-side and real time comparison on the

internet. In addition, NextGen-DF provides a new customized design based on user input

of decision table generated by mTPI. We allow any changes to be made in the customized

design, but such a design must be examined through simulations using thousands of simulated

trials in the “Simulation” and “Comparison” modules (Module II and III) in our NextGene-

DF tool. Customized designs with inconsistent decisions will for sure lose in the comparison

and be screened off. However, potentially comparable and more desirable designs could

be generated as well. NextGen-DF’s ultra-fast speed allows users to potentially modify

the customized design repeatedly in practice. Through the web tool we summarize the

crowdsourcing results comparing the three trial designs, which provides convincing evidence

supporting the inferiority of 3+3 and desirability of mTPI. These results will guide the public
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in choosing the most efficient methods in practice. We will continue to publish user-generated

results as an objective evaluation of the available designs. Within a few months, NextGene-

DF has already attracted real-world users from major academic and industrial institutions

(see http://www.compgenome.org/NGDF/). It is expected that NextGene-DF will generate

a consensus from users on the choice of the best designs for phase I dose-finding trials in

practice. This achieves a triple goal of improved user experience in practice, better protection

for patients, and higher chance of finding the true MTD for drug developers.

When compared to trials for other complications, Hay et al. [4] showed miserable and

nearly the worst success rate and likelihood of approval for phase I oncology studies. The

authors noted

”... Unfortunately, in oncology, when all indications are considered, only around 1 in 15

drugs entering clinical development in phase 1 achieves FDA approval compared with close

to 1 in 8 using the lead indication methodology.”

We believe that NextGene-DF will address this deficiency and help improve the success

rate of cancer drug development.

Acknowledgement

Yuan Ji’s research is partly supported by NIH 2R01 CA132897-06.

26



Appendix

######## R output for the linear regression of diff-sel on x1--x6 ############

lm(formula = diff-sel ~ x[, "pt"] + x[, "sd"] + x[, "min"] + x[, "dosenumber"] +

factor(x[, "mtd_rank"]) + x[, "variability"])

Residuals:

Min 1Q Median 3Q Max

-0.58863 -0.05015 0.00154 0.04920 0.50577

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.903e-02 4.113e-02 0.949 0.34293

x[, "pt"] -2.265e-01 8.621e-02 -2.627 0.00885 **

x[, "sd"] 6.418e-01 9.053e-02 7.089 3.90e-12 ***

x[, "min"] -7.842e-02 8.923e-02 -0.879 0.37981

x[, "dosenumber"] -1.803e-02 3.657e-03 -4.931 1.07e-06 ***

factor(x[, "mtd_rank"])2 4.796e-02 2.435e-02 1.969 0.04938 *

factor(x[, "mtd_rank"])3 4.609e-02 2.877e-02 1.602 0.10975

factor(x[, "mtd_rank"])4 -2.701e-02 3.472e-02 -0.778 0.43678

x[, "linearity"] -4.688e-05 2.385e-04 -0.197 0.84424

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

######## R output for the linear regression of diff-n on x1--x6 ############

lm(formula = diff-n ~ x[, "pt"] + x[, "sd"] + x[, "min"] + x[, "dosenumber"] +

factor(x[, "mtd_rank"]) + x[, "variability"])

Residuals:

Min 1Q Median 3Q Max

-0.198847 -0.013517 0.001551 0.015829 0.124232

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -9.009e-02 1.401e-02 -6.428 2.68e-10 ***

x[, "pt"] 1.882e-01 2.938e-02 6.406 3.08e-10 ***

x[, "sd"] 2.046e-01 3.085e-02 6.631 7.60e-11 ***

x[, "min"] 5.053e-02 3.041e-02 1.662 0.0971 .

x[, "dosenumber"] -6.790e-03 1.246e-03 -5.449 7.47e-08 ***

factor(x[, "mtd_rank"])2 3.346e-02 8.299e-03 4.032 6.26e-05 ***

factor(x[, "mtd_rank"])3 5.035e-02 9.805e-03 5.135 3.84e-07 ***

factor(x[, "mtd_rank"])4 5.608e-02 1.183e-02 4.741 2.68e-06 ***

x[, "linearity"] 3.578e-06 8.127e-05 0.044 0.9649

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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